Arduino Temperatures to InfluxDB and Grafana Display on Windows

Note

This recipe is outdated. There is a new 2.x version of InfluxDB which integrates a web interface and dashboard (Grafana is not necessary). See the documentation for the v2 InfluxDB2DataSink plugin for more information.

This recipe outlines connecting commonly available DS18B20 temperature sensors to an Arduino, which collects data and sends it via a USB serial connection to a Windows machine running InfluxDB database. Grafana is used display the data over a web interface.

Note

No, I don’t know why doing anything on Windows is so difficult.

Hardware

Get the Arduino code from GitLab or copy and paste below into a new Arduino sketch. Upload it to your Arduino.
datalog.ino
#include <Arduino.h>
#include <Wire.h>
#include <SPI.h>

////////////////////////////////////////////////////////////
// Device Configuration Settings
////////////////////////////////////////////////////////////

// An ID string for this Arduino
#define BOARD_ID_STRING "A"

// Interval between reads of devices
#define READ_INTERVAL 2000
// Interval between empty "keep alive" messages to maintain connection
#define KEEPALIVE_INTERVAL 1000

// Select which types of sensors to use
#define USE_DIGITAL_PINS true
#define USE_ANALOG_PINS true
#define USE_DS18B20_TEMPERATURE true
#define USE_BH1750_LUX false
#define USE_COUNTER false

////////////////////////////////////////////////////////////
// Pin Definitions and Sensor Configuration
////////////////////////////////////////////////////////////

#if USE_ANALOG_PINS
  // Set of analog input pins to read
  const int analog_pins[] = {A0, A1, A2, A3, A4, A5};
#endif

#if USE_DIGITAL_PINS
  // Set of digital input pins to read
  const int digital_pins[] = {4, 5, 6};
#endif

#if USE_DS18B20_TEMPERATURE
  // Run the 1-wire bus on pin 12
  const int onewire_pin = 12;
#endif

#if USE_COUNTER
  // Flow sensor pulse pin input, must be interrupt enabled
  // These are pins 0, 1, 2, 3, 7 for a Leonardo board
  // Note that Leonardo needs pins 0+1 for Serial1 and 2+3 for I2C
  const int counter_pin = 7;
  // Pin where an LED is connected, will toggle LED in sync with incoming pulses
  // Set to 0 to disable
  const int led_pin = 13;
#endif

////////////////////////////////////////////////////////////


#if USE_DS18B20_TEMPERATURE
  #include <OneWire.h>
  #include <DallasTemperature.h>
  // Initialise the 1-Wire bus
  OneWire oneWire(onewire_pin);
  // Pass our 1-Wire reference to Dallas Temperature
  DallasTemperature thermometers(&oneWire);
#endif

#if USE_BH1750_LUX
  #include <hp_BH1750.h>
  // Reference to the BH1750 light meter module over I2C
  hp_BH1750 luxmeter;
#endif

#if USE_COUNTER
  // Number of pulses read from the flow meter
  volatile unsigned long counter_count = 0;
  // Stored start time and pulse count for flow rate calculation
  unsigned long counter_start_millis = 0;
  unsigned long counter_start_count = 0;
  volatile unsigned int led_state = LOW;
#endif


// Variable to record last data acquisition time
unsigned long measurement_start_millis = 0;
unsigned long keepalive_start_millis = 0;

// Variable to keep track of whether record separators (comma) needs to be prepended to output
bool first_measurement = true;


#if USE_DS18B20_TEMPERATURE
  // Format a DS18B20 device address to a 16-char hex string
  String formatAddress(DeviceAddress address) {
    String hex = "";
    for (uint8_t i = 0; i < 8; i++) {
      if (address[i] < 16) hex += "0";
      hex += String(address[i], HEX);
    }
    return hex;
  }
#endif

// Print out a measurement to the serial port
void printMeasurement(String type, String id, String value, String units="") {
  // A comma separator needs to be prepended to measurements other than the first
  if (first_measurement) {
    first_measurement = false;
  } else {
    Serial.print(",");
  }
  Serial.print("{\"type\":\"");
  Serial.print(type);
  Serial.print("\",\"source\":\"");
  Serial.print(BOARD_ID_STRING);
  Serial.print("\",\"id\":\"");
  Serial.print(BOARD_ID_STRING);
  Serial.print("_");
  Serial.print(id);
  Serial.print("\",\"value\":\"");
  Serial.print(value);
  if (units.length() > 0) {
    Serial.print("\",\"units\":\"");
    Serial.print(units);
  }
  Serial.print("\"}");
}

#if USE_COUNTER
  // Interrupt handler for a pulse from the flow meter
  void counterIncrement() {
    counter_count++;
    if (led_pin != 0) {
      digitalWrite(led_pin, led_state = !led_state);
    }
  }
#endif

void setup(void)
{
  // Open serial port
  Serial.begin(115200);

  #if USE_DS18B20_TEMPERATURE
    // Initialise I2C bus
    Wire.begin();
    pinMode(onewire_pin, INPUT_PULLUP);
  #endif

  #if USE_DIGITAL_PINS
    // Configure set of digital input pins
    for (uint8_t i = 0; i < uint8_t(sizeof(digital_pins)/sizeof(digital_pins[0])); i++) {
      pinMode(digital_pins[i], INPUT);
    }
  #endif

  #if USE_COUNTER
    // Configure the flow meter input pin and interrupt for pulse counting
    pinMode(counter_pin, INPUT_PULLUP);
    attachInterrupt(digitalPinToInterrupt(counter_pin), counterIncrement, RISING);
    // LED to toggle if defined
    if (led_pin != 0) {
      pinMode(led_pin, OUTPUT);
      digitalWrite(led_pin, led_state);
    }
    counter_start_millis = millis();
  #endif
}


void loop(void)
{
  // Record current time
  unsigned long current_millis = millis();
  // Check if it's time to take some new measurements
  if (current_millis - measurement_start_millis >= READ_INTERVAL) {
    measurement_start_millis = current_millis;
    // The first measurement in this cycle doesn't need a comma delimiter prepended
    first_measurement = true;

    // Print message start
    Serial.print("{\"board\":\"" + String(BOARD_ID_STRING) + "\",");
    Serial.print("\"timestamp\":\"" + String(measurement_start_millis) + "\",");
    Serial.print("\"message\":\"measurement\",\"data\":[");
    
    ///////////////////////////////////////////////////////////////////////////
    // Arduino Digital Pins
    ///////////////////////////////////////////////////////////////////////////
    #if USE_DIGITAL_PINS
      // Read digital pins
      unsigned int d = 0;
      for (uint8_t i = 0; i < uint8_t(sizeof(digital_pins)/sizeof(digital_pins[0])); i++) {
        d += digitalRead(digital_pins[i]) << i;
      }
      printMeasurement("digital", "0", String(d));
    #endif

    ///////////////////////////////////////////////////////////////////////////
    // Arduino Analog Pins
    ///////////////////////////////////////////////////////////////////////////
    #if USE_ANALOG_PINS
      // Read analog pins
      for (uint8_t i = 0; i < uint8_t(sizeof(analog_pins)/sizeof(analog_pins[0])); i++) {
        printMeasurement("analog", String(i), String(analogRead(analog_pins[i])));
      }
    #endif

    ///////////////////////////////////////////////////////////////////////////
    // DS18B20 Temperature Probes
    ///////////////////////////////////////////////////////////////////////////
    #if USE_DS18B20_TEMPERATURE
      // We'll reinitialise the temperature probes each time inside the loop so that
      // devices can be connected/disconnected while running
      thermometers.begin();
      // Temporary variable for storing 1-Wire device addresses
      DeviceAddress address; 
      // Grab a count of temperature probes on the wire
      unsigned int numberOfDevices = thermometers.getDeviceCount();
      // Loop through each device, set requested precision
      for(unsigned int i = 0; i < numberOfDevices; i++) {
        if(thermometers.getAddress(address, i)) {
          thermometers.setResolution(address, 12);
        }
      }
      // Issue a global temperature request to all devices on the bus
      if (numberOfDevices > 0) {
        thermometers.requestTemperatures();
      }
      // Loop through each device, print out temperature data
      for(unsigned int i = 0; i < numberOfDevices; i++) {
        if(thermometers.getAddress(address, i)) {
          printMeasurement("temperature", formatAddress(address), String(thermometers.getTempC(address), 2), "C");
        }
      }
    #endif

    ///////////////////////////////////////////////////////////////////////////
    // BH1750 Lux Meter
    ///////////////////////////////////////////////////////////////////////////
    #if USE_BH1750_LUX
      // Attempt to initialise and read light meter sensor
      if (luxmeter.begin(BH1750_TO_GROUND)) {
        luxmeter.start();
        printMeasurement("lux", "0", String(luxmeter.getLux(), 0), "lux");
      }
    #endif

    ///////////////////////////////////////////////////////////////////////////
    // Fluid Flow Meter
    ///////////////////////////////////////////////////////////////////////////
    #if USE_COUNTER
      unsigned long counter_end_count = counter_count;
      unsigned long counter_end_millis = millis();
      // Total volume in sensor pulses
      printMeasurement("counter_total", "0", String(counter_end_count), "counts");
      // Current flow rate in pulses per minute
      float counter_rate = 1000.0*(counter_end_count - counter_start_count)/(counter_end_millis - counter_start_millis);
      printMeasurement("counter_rate", "0", String(counter_rate, 4), "Hz");
      counter_start_count = counter_end_count;
      counter_start_millis = counter_end_millis;
    #endif

    // Print message end
    Serial.println("]}");
  } else if (current_millis - keepalive_start_millis >= KEEPALIVE_INTERVAL) {
    // Send keepalive packet to maintain serial communications
    keepalive_start_millis = current_millis;
    // Print empty message
    Serial.print("{\"board\":\"" + String(BOARD_ID_STRING) + "\",");
    Serial.print("\"timestamp\":\"" + String(keepalive_start_millis) + "\",");
    Serial.println("\"message\":\"measurement\",\"data\":[]}");
  }
}

Connect VCC to +5 V, GND to ground, and DATA to pin 12 (or another, to match that specified in the code). Plug the Arduino into your Windows machine with a USB cable.

This is a “Pro Micro” Arduino Leonardo compatible board, connected to the DS18B20 sensors using 3.5 mm audio jacks. The benefits of these are that readily available plugs, sockets, splitters and extensions can be used. Don’t try plugging headphones in though, they will likely be fried!

../_images/arduino-ds18b20.jpg

Recipe

recipes/serial_temperatures_influxdb.config
[datalogd]
connection_graph =
  digraph {
    a [class=SerialDataSource];
    f [class=KeyValDataFilter, key="type", val="temperature"];
    s [class=InfluxDBDataSink];
    a -> f -> s;
  }

Software

Download and install InfluxDB, and configure it to run at startup:

  • Download InfluxDB from https://portal.influxdata.com/downloads/ and unzip to Program Files, then rename directory to InfluxDB.
  • Go the directory and run influxd.exe.
  • Run influx.exe. Type create database datalogd then exit.
  • Hit Control+C on the influxd.exe window.
  • Get the InfluxDB.xml file and save it somewhere.
  • Open Task Scheduler (windows key, type taskschd.msc, enter). Click Action->Import Task..., select the InfluxDB.xml file. Click the Change User or Group... button, type your user name, click Check Names, then OK.
  • Right click the datalogd entry, and select Run, then click OK.

Download and install Grafana:

  • Download Grafana.
  • Install.
  • Go to http://localhost:3000, login with admin admin, and set a new password.
  • Add an InfluxDB data source using default settings.